train_data是训练特征数据, train_label是分类标签。
Predict_label是预测的标签。MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式MultiNomial logistic Regression)Factor = mnrfit(train_data, train_label);Scores = mnrval(Factor, test_data);scores是语义向量(概率输出)。对高维特征,吃不消。2.随机森林分类器(Random Forest)Factor = TreeBagger(nTree, train_data, train_label);[Predict_label,Scores] = predict(Factor, test_data);scores是语义向量(概率输出)。实验中nTree = 500。效果好,但是有点慢。2500行数据,耗时400秒。500万行大数据分析,会咋样?准备好一篇小说慢慢阅读吧^_^3.朴素贝叶斯分类(Naive Bayes)Factor = NaiveBayes.fit(train_data, train_label);Scores = posterior(Factor, test_data);[Scores,Predict_label] = posterior(Factor, test_data);Predict_label = predict(Factor, test_data);accuracy = length(find(predict_label == test_label))/length(test_label)*100;效果不佳。4. 支持向量机SVM分类Factor = svmtrain(train_data, train_label);predict_label = svmclassify(Factor, test_data);不能有语义向量 Scores(概率输出)支持向量机SVM(Libsvm)Factor = svmtrain(train_label, train_data, '-b 1');[predicted_label, accuracy, Scores] = svmpredict(test_label, test_data, Factor, '-b 1');5.K近邻分类器 (KNN)predict_label = knnclassify(test_data, train_data,train_label, num_neighbors);accuracy = length(find(predict_label == test_label))/length(test_label)*100;不能有语义向量 Scores(概率输出)IDX = knnsearch(train_data, test_data);IDX = knnsearch(train_data, test_data, 'K', num_neighbors);[IDX, Dist] = knnsearch(train_data, test_data, 'K', num_neighbors);IDX是近邻样本的下标集合,Dist是距离集合。自己编写, 实现概率输出 Scores(概率输出)Matlab 2012新版本:Factor = ClassificationKNN.fit(train_data, train_label, 'NumNeighbors', num_neighbors);predict_label = predict(Factor, test_data);[predict_label, Scores] = predict(Factor, test_data);6.集成学习器(Ensembles for Boosting, Bagging, or Random Subspace)Matlab 2012新版本:Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree');Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree', 'type', 'classification');Factor = fitensemble(train_data, train_label, 'Subspace', 50, 'KNN');predict_label = predict(Factor, test_data);[predict_label, Scores] = predict(Factor, test_data);效果比预期差了很多。不佳。7. 判别分析分类器(discriminant analysis classifier)Factor = ClassificationDiscriminant.fit(train_data, train_label);Factor = ClassificationDiscriminant.fit(train_data, train_label, 'discrimType', '判别类型:伪线性...');predict_label = predict(Factor, test_data);[predict_label, Scores] = predict(Factor, test_data);
转载自:http://blog.csdn.net/xuhaijiao99/article/details/15027093